Inverse Matrix 3 by 3

Inverse Matrix 3 by 3

Inverse Matrix 3×3  Determinant

 

Inverse of a 3×3 Matrix

The inverse of a matrix \(A\) is another matrix \(A^{-1}\) such that when multiplied, the result is the identity matrix \(I\), i.e.,

\[
A \times A^{-1} = A^{-1} \times A = I
\]

A matrix has an inverse if and only if its determinant is non-zero. The inverse of a 3×3 matrix is calculated using the following formula:

Given the matrix

\[
A = \begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix}
\]

the inverse is:

\[
A^{-1} = \frac{1}{\text{det}(A)} \times \begin{pmatrix}
\text{det}(A_{11}) & -\text{det}(A_{12}) & \text{det}(A_{13}) \\
-\text{det}(A_{21}) & \text{det}(A_{22}) & -\text{det}(A_{23}) \\
\text{det}(A_{31}) & -\text{det}(A_{32}) & \text{det}(A_{33})
\end{pmatrix}
\]

Where \(A_{ij}\) represents the \(2 \times 2\) submatrix formed by removing the \(i\)-th row and \(j\)-th column of matrix \(A\).

Step-by-Step Calculation:

1. Find the determinant of \(A\) (as described earlier).
2. Calculate the cofactors: For each element of the matrix, calculate the cofactor by finding the determinant of the corresponding \(2 \times 2\) submatrix and applying the appropriate sign.
3. Form the adjugate matrix: The adjugate matrix is the transpose of the cofactor matrix.
4. Multiply by \(1/\text{det}(A)\): The inverse matrix is the adjugate matrix multiplied by the reciprocal of the determinant of \(A\).

Example 1:

Given the matrix

\[
A = \begin{pmatrix}
2 & 1 & 3 \\
0 & 4 & 5 \\
1 & 1 & 6
\end{pmatrix}
\]

Step 1: Find the determinant of \(A\)

\[
\text{det}(A) = 2(4 \times 6 – 5 \times 1) – 1(0 \times 6 – 5 \times 1) + 3(0 \times 1 – 4 \times 1)
\]

\[
\text{det}(A) = 2(24 – 5) – 1(0 – 5) + 3(0 – 4)
\]

\[
\text{det}(A) = 2(19) – 1(-5) + 3(-4)
\]

\[
\text{det}(A) = 38 + 5 – 12 = 31
\]

So, the determinant of \(A\) is \(31\).

Step 2: Find the cofactors:

– \(A_{11} = \begin{vmatrix} 4 & 5 \\ 1 & 6 \end{vmatrix} = (4 \times 6) – (5 \times 1) = 24 – 5 = 19\)
– \(A_{12} = \begin{vmatrix} 0 & 5 \\ 1 & 6 \end{vmatrix} = (0 \times 6) – (5 \times 1) = -5\)
– \(A_{13} = \begin{vmatrix} 0 & 4 \\ 1 & 1 \end{vmatrix} = (0 \times 1) – (4 \times 1) = -4\)
– \(A_{21} = \begin{vmatrix} 1 & 3 \\ 1 & 6 \end{vmatrix} = (1 \times 6) – (3 \times 1) = 6 – 3 = 3\)
– \(A_{22} = \begin{vmatrix} 2 & 3 \\ 1 & 6 \end{vmatrix} = (2 \times 6) – (3 \times 1) = 12 – 3 = 9\)
– \(A_{23} = \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = (2 \times 1) – (1 \times 1) = 2 – 1 = 1\)
– \(A_{31} = \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = (1 \times 5) – (3 \times 4) = 5 – 12 = -7\)
– \(A_{32} = \begin{vmatrix} 2 & 3 \\ 0 & 5 \end{vmatrix} = (2 \times 5) – (3 \times 0) = 10\)
– \(A_{33} = \begin{vmatrix} 2 & 1 \\ 0 & 4 \end{vmatrix} = (2 \times 4) – (1 \times 0) = 8\)

Step 3: Form the cofactor matrix:

\[
\text{Cofactor}(A) = \begin{pmatrix}
19 & -5 & -4 \\
-3 & 9 & 1 \\
-7 & 10 & 8
\end{pmatrix}
\]

Step 4: Transpose the cofactor matrix to get the adjugate matrix:

\[
\text{Adj}(A) = \begin{pmatrix}
19 & -3 & -7 \\
-5 & 9 & 10 \\
-4 & 1 & 8
\end{pmatrix}
\]

Step 5: Multiply by \(1/\text{det}(A)\):

\[
A^{-1} = \frac{1}{31} \times \begin{pmatrix}
19 & -3 & -7 \\
-5 & 9 & 10 \\
-4 & 1 & 8
\end{pmatrix}
\]

\[
A^{-1} = \begin{pmatrix}
\frac{19}{31} & \frac{-3}{31} & \frac{-7}{31} \\
\frac{-5}{31} & \frac{9}{31} & \frac{10}{31} \\
\frac{-4}{31} & \frac{1}{31} & \frac{8}{31}
\end{pmatrix}
\]

Thus, the inverse of matrix \(A\) is:

\[
A^{-1} = \begin{pmatrix}
\frac{19}{31} & \frac{-3}{31} & \frac{-7}{31} \\
\frac{-5}{31} & \frac{9}{31} & \frac{10}{31} \\
\frac{-4}{31} & \frac{1}{31} & \frac{8}{31}
\end{pmatrix}
\]

 

The inverse of a 3×3 matrix is computed by:

  1. Finding the determinant.
  2. Calculating the cofactors.
  3. Forming the cofactor matrix.
  4. Taking the transpose to get the adjugate.
  5. Multiplying by the reciprocal of the determinant.

If the determinant is zero, the matrix does not have an inverse, and it is called singular.

Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock