Quick Math Cross Product Matrix

Quick Math Cross Product Matrix

1
Enter expression in this form

Example (3x3 Matrix):  Enter expression as [3,4,5],[6,7,8]

Cross Product Matrix

In vector algebra, the cross product is an operation on two vectors in three-dimensional space, producing another vector that is perpendicular to the plane containing the original vectors. This can be represented using a special matrix called the cross product matrix or skew-symmetric matrix.

Definition

Given a vector \(\mathbf{a} = [a_1, a_2, a_3]^T\), the cross product matrix \([ \mathbf{a} ]_\times\) is defined as:

\[
[\mathbf{a}]_\times = \begin{pmatrix}
0 & -a_3 & a_2 \\
a_3 & 0 & -a_1 \\
-a_2 & a_1 & 0
\end{pmatrix}
\]

Cross Product Using the Matrix

For two vectors \(\mathbf{a}\) and \(\mathbf{b}\), the cross product \(\mathbf{a} \times \mathbf{b}\) can be computed using the cross product matrix as follows:

\[
\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_\times \mathbf{b}
\]

Example

Let’s compute the cross product of \(\mathbf{a} = [1, 2, 3]^T\) and \(\mathbf{b} = [4, 5, 6]^T\).

1. Construct the Cross Product Matrix:

\[
[\mathbf{a}]_\times = \begin{pmatrix}
0 & -3 & 2 \\
3 & 0 & -1 \\
-2 & 1 & 0
\end{pmatrix}
\]

2. Compute the Cross Product:

\[
\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_\times \mathbf{b} = \begin{pmatrix}
0 & -3 & 2 \\
3 & 0 & -1 \\
-2 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
4 \\
5 \\
6
\end{pmatrix}
\]

Perform the matrix-vector multiplication:

\[
= \begin{pmatrix}
0 \cdot 4 + (-3) \cdot 5 + 2 \cdot 6 \\
3 \cdot 4 + 0 \cdot 5 + (-1) \cdot 6 \\
-2 \cdot 4 + 1 \cdot 5 + 0 \cdot 6
\end{pmatrix}
= \begin{pmatrix}
0 – 15 + 12 \\
12 + 0 – 6 \\
-8 + 5 + 0
\end{pmatrix}
= \begin{pmatrix}
-3 \\
6 \\
-3
\end{pmatrix}
\]

Verification

To verify, we can use the standard cross product formula:

\[
\mathbf{a} \times \mathbf{b} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 3 \\
4 & 5 & 6
\end{vmatrix} = \mathbf{i}(2 \cdot 6 – 3 \cdot 5) – \mathbf{j}(1 \cdot 6 – 3 \cdot 4) + \mathbf{k}(1 \cdot 5 – 2 \cdot 4)
= \mathbf{i}(-3) – \mathbf{j}(-6) + \mathbf{k}(-3)
= [-3, 6, -3]
\]

Thus, the cross product calculated using the cross product matrix is verified. This example illustrates how to compute the cross product of two vectors using the cross product matrix approach.

Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock