MATHCRAVE
MathCrave AI

# Prettify AI Binomial Series

## AI Binomial Series

AI binomial series solver solves binomial expansion problems using MathCrave ‘s in-built command prompts

### Binomial Expressions and Binomial Expansion

Learning Objectives:

By the end of this lesson, students will be able to:
1. Define a binomial expression.
2. Use Pascal’s triangle to expand a binomial expression.
3. State the general binomial expansion of $$(a + x)^n$$ and $$(1+ x)^n$$.
4. Use the binomial series to expand expressions of the form $$(a + x)^n$$ for positive, negative, and fractional values of $$n$$.
5. Determine the $$r$$-th term of a binomial expansion.
6. Apply the binomial expansion to practical problems.

#### 1. Definition of a Binomial Expression

A binomial expression is an algebraic expression that contains exactly two terms. For example, $$a + x$$ and $$2x – 3$$ are binomial expressions.

#### 2. Using Pascal’s Triangle to Expand a Binomial Expression

Pascal’s Triangle is a triangular array of numbers where each number is the sum of the two directly above it. The $$n$$-th row of Pascal’s Triangle provides the coefficients for the expansion of $$(a + x)^n$$.

Example:
Expand $$(a + x)^3$$ using Pascal’s Triangle.

Pascal’s Triangle up to the 4th row:
1
1 1
1 2 1
1 3 3 1

The coefficients for $$(a + x)^3$$ are 1, 3, 3, 1.

Thus, $$(a + x)^3 = 1a^3 + 3a^2x + 3ax^2 + 1x^3$$

#### 3. General Binomial Expansion

Binomial Theorem:
The general binomial expansion of $$(a + x)^n$$ is given by:
$(a + x)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} x^r$
where $$\binom{n}{r}$$ is a binomial coefficient, calculated as $$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$.

For $$(1 + x)^n$$, the expansion simplifies to:
$(1 + x)^n = \sum_{r=0}^{n} \binom{n}{r} x^r$

#### 4. Binomial Series for Any $$n$$

The binomial series can be used to expand $$(a + x)^n$$ for positive, negative, and fractional values of $$n$$:

$(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \ldots$

For $$a \neq 1$$:
$(a + x)^n = a^n \left(1 + \frac{x}{a}\right)^n$

Example:

Expand $$(2 + x)^{-2}$$:

$(2 + x)^{-2} = 2^{-2} \left(1 + \frac{x}{2}\right)^{-2} = \frac{1}{4} \left(1 – 2 \frac{x}{2} + 3 \frac{x^2}{4} – \ldots \right)$

#### 5. Determining the $$r$$-th Term of a Binomial Expansion

The general term (or $$r$$-th term) in the expansion of $$(a + x)^n$$ is given by:
$T_{r+1} = \binom{n}{r} a^{n-r} x^r$

Example:
Find the 4th term of $$(3 + x)^5$$:

The 4th term is $$T_4$$, so $$r = 3$$:

$T_4 = \binom{5}{3} 3^{5-3} x^3 = \binom{5}{3} 3^2 x^3 = 10 \cdot 9 x^3 = 90 x^3$

#### 6. Practical Applications of Binomial Expansion

Example: Probability
In probability, the binomial expansion can be used to calculate probabilities of different outcomes.

Suppose we want to find the probability of getting exactly 3 heads in 5 tosses of a fair coin. Using the binomial expansion:
$P(3 \text{ heads}) = \binom{5}{3} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^{5-3} = 10 \cdot \left(\frac{1}{2}\right)^5 = 10 \cdot \frac{1}{32} = \frac{10}{32} = \frac{5}{16}$

Example: Finance
Binomial expansions can be used in financial mathematics to model compound interest, option pricing, and other financial instruments.

#### Summary

1. Define a binomial expression.
2. Use Pascal’s Triangle for expansion.
3. State the General Binomial Expansion for $$(a + x)^n$$ and $$(1 + x)^n$$.
4. Expand Expressions for any $$n$$ using the binomial series.
5. Determine the $$r$$-th Term of a binomial expansion.
6. Apply the Binomial Expansion to practical problems.