Trigonometric Identities
Trigonometric Equation Solvers
Select an equation type below to solve it. Solutions will be found in the range $0^\circ \le A < 360^\circ$.
Solve $b \sin A + c = 0$
Solution steps will appear here...
Solve $a \sin^2 A + c = 0$
Solution steps will appear here...
Solve $a \sin^2 A + b \sin A + c = 0$
Solution steps will appear here...
Solve Equations Requiring Identities (e.g., $2 \cos^2 A + \sin A - 1 = 0$)
This solver demonstrates using $\cos^2 A = 1 - \sin^2 A$ to reduce the equation $A \cos^2 X + B \sin X + C = 0$ to a quadratic in $\sin X$.
Solution steps will appear here...
Common Trigonometric Identities
Fundamental Identities
$\sin^2 \theta + \cos^2 \theta = 1$
$1 + \tan^2 \theta = \sec^2 \theta$
$1 + \cot^2 \theta = \csc^2 \theta$
$\tan \theta = \frac{\sin \theta}{\cos \theta}$
$\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}$
$\sec \theta = \frac{1}{\cos \theta}$
$\csc \theta = \frac{1}{\sin \theta}$
Sum and Difference Identities
$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
Double Angle Identities
$\sin(2A) = 2 \sin A \cos A$
$\cos(2A) = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$
$\tan(2A) = \frac{2 \tan A}{1 - \tan^2 A}$