Adding Alternating Waveforms

Alternating Waveforms
Use Scalar and Vector | Vectors

Adding Alternating Waveforms (Same Frequency)

Add two sinusoidal waveforms of the same angular frequency:

$y_1(t) = A_1 \sin(\omega t + \alpha_1)$
$y_2(t) = A_2 \sin(\omega t + \alpha_2)$
$y_{sum}(t) = y_1(t) + y_2(t) = A_{sum} \sin(\omega t + \alpha_{sum})$

Wave 1 Parameters:

Amplitude (A1):1.0
Phase Shift (α1) / π:0.0

Phase shift is $\alpha_1 = (\text{slider value}) \times \pi$ radians.

Wave 2 Parameters:

Amplitude (A2):1.0
Phase Shift (α2) / π:0.0

Phase shift is $\alpha_2 = (\text{slider value}) \times \pi$ radians.

Common Angular Frequency:

Angular Frequency (ω):1.0

Resulting waveform properties will appear here...

Trigonometric Problem Solver

Find Angles (0° to 360°)

Analyze Waveform Equation

Frequency & Period Conversion

Basic Trigonometric Waveforms

Visualizing the fundamental shapes of sine, cosine, and tangent functions plotted against an angle (in radians).

  • $y = \sin(x)$: Starts at 0, peaks at 1, crosses 0, troughs at -1, returns to 0 over a period of $2\pi$.
  • $y = \cos(x)$: Starts at 1, crosses 0, troughs at -1, crosses 0, returns to 1 over a period of $2\pi$. It leads the sine wave by $\pi/2$.
  • $y = \tan(x)$: Represents $\sin(x)/\cos(x)$. It has a period of $\pi$ and vertical asymptotes where $\cos(x) = 0$.

Note: Tangent asymptotes occur at $x = \frac{\pi}{2} + n\pi$. The plot shows values approaching $\pm\infty$.

Wave Properties

  • Amplitude (A): Peak deviation from the center line (for sine/cosine). $A = \frac{Max - Min}{2}$.
  • Period (T): The length (e.g., time or angle) of one complete cycle.
  • Frequency (f): Number of cycles per unit time/angle. $f = 1/T$. Unit: Hertz (Hz) if time is in seconds.
  • Angular Frequency (ω): Rate of change of phase in radians per unit time/angle. $\omega = 2\pi f = 2\pi/T$. Unit: rad/s or rad/unit.
  • Phase Shift (α or C): Horizontal shift relative to a reference wave. Measured in radians or degrees.

General Sinusoidal Form: $y(t) = A \sin(\omega t + \alpha)$

This form allows us to describe modified sine waves:

  • $A$: Amplitude (controls height).
  • $\omega$: Angular Frequency (controls period/frequency - how compressed the wave is).
  • $\alpha$: Phase Angle (controls horizontal shift).
    • $+\alpha$: Left shift (Lead) by $\alpha/\omega$.
    • $-\alpha$: Right shift (Lag) by $|\alpha|/\omega$.

Relationship: Period $T = \frac{2\pi}{\omega}$, Frequency $f = \frac{\omega}{2\pi}$.

Adjust Parameters:

Amplitude (A):1.0
Angular Frequency (ω):1.0
Phase Shift (α) / π:0.0

Phase shift is $\alpha = (\text{slider value}) \times \pi$ radians.

Calculated Properties:

Period (T) = $2\pi / \omega$ =

Frequency (f) = $\omega / 2\pi$ = Hz (if x-axis is time in s)

Horizontal Shift = $-\alpha / \omega$ = units

Harmonic Synthesis

Complex periodic waves can be constructed by adding a fundamental sine wave ($f_1$) and its harmonics (integer multiples of $f_1$, like $2f_1, 3f_1, ...$), each with its own amplitude and phase.

$y_{complex}(t) = C_1 \sin(\omega_1 t + \phi_1) + C_2 \sin(2\omega_1 t + \phi_2) + C_3 \sin(3\omega_1 t + \phi_3) + ...$

This example adds a fundamental and its 3rd harmonic.

Adjust Parameters for $y(t) = A_1 \sin(\omega t) + A_3 \sin(3\omega t + \alpha_3)$:

Fundamental Amplitude (A1):2.0
3rd Harmonic Amplitude (A3):1.0
3rd Harmonic Phase (α3) / π:0.0

Phase shift is $\alpha_3 = (\text{slider value}) \times \pi$ radians.

Base Angular Frequency (ω):1.0

Note:

The resulting complex wave is still periodic with the fundamental period $T = 2\pi / \omega$.

Fundamental Period (T) =